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Low magnetic fields for flow propagators in permeable rocks
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Abstract

Pulsed field gradient NMR flow propagators for water flow in Bentheimer sandstone are measured at low fields (1H resonance
2 MHz), using both unipolar and bipolar variants of the pulsed gradient method. We compare with propagators measured at high fields
(1H resonance 85 MHz). We show that (i) measured flow propagators appear to be equivalent, in this rock, and (ii) the lower signal to
noise ratio at low fields is not a serious limitation. By comparing different pulse sequences, we study the effects of the internal gradients
on the propagator measurement at 2 MHz, which for certain rocks may persist even at low fields.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Increasingly, laboratory nuclear magnetic resonance
(NMR) measurements are being made at ever-higher mag-
netic fields to enhance resolution and signal to noise ratio
(S/N or SNR). In a different context, NMR at low magnetic
fields (1H resonance frequency x0/2p [ 2 MHz), and with
low-resolution magnets, is now widely used as a borehole
measurement in petroleum and other geophysical explora-
tion [1,2]. With the growing demand for hydrocarbons there
is an immense and imminent need for developing new NMR
laboratory techniques, for application to sedimentary rocks
and other porous media, at these lower frequencies.

A laboratory technique receiving much current attention
is the measurement of the NMR flow propagator [3–15]
and the NMR time-of-flight technique [16–18]. This is
mainly because the largest length scales that can be probed
by diffusion and relaxation measurements [19–21] are
�100 lm, which can be less than the size of the largest
pores in some rocks, especially carbonates (limestones
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and dolomites). Furthermore the actual physics of flow in
complex porous media is of interest in a wide range of pro-
cesses in chemical, geological, and biological systems. Dis-
persion, the transport of molecules or tracers due to
combined effects of diffusion and fluid flow at low Rey-
nolds number, is an important problem both in the funda-
mentals of hydrodynamics [22–24] and in its application in
diverse fields including biological perfusion, chemical reac-
tors, soil remediation and oil recovery. These flow process-
es are controlled by the nature of the interconnections, and
the topology of the pore space over length scales equivalent
to many pores. Although for highly heterogenous samples,
multiple length scales can be important [7,8,12,24–27] and
not all are accessible by NMR methods, the NMR flow
propagators can nevertheless probe displacements of the
order of �5 mm. This is almost two orders of magnitude
larger than those achievable by the diffusion and relaxation
methods currently used, in petroleum industry practice, as
probes of the rock pore space.

Hitherto, most laboratory pulsed-field-gradient
(PFG-NMR) experiments measuring flow propagators
and dispersion in porous media have used high (typically
85 MHz 1H resonance) magnetic fields [3–9,11–16,18].
The advantage of high fields in SNR is well-known; their
draw-back is a strong increase in the deleterious effects of
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induced internal field gradients. Contrast in magnetic sus-
ceptibility Dv between fluid components and solids gives
rise to induced internal field gradients gint which increase
with static field B0(=x0/c). These may be reduced by reduc-
tions in B0. The reduction is at least linear; in [28] it is
shown that diffusion in the larger pores imposes a maxi-
mum effective gradient gmax, which scales super-linearly
as B3=2

0 . For the first time, we compare the propagators
measured at low fields (2 MHz present work) to those
determined at high fields (85 MHz [14]) using adjacent
core-plugs and using similar pulse sequences. We conclude
that internal gradient effects on the flow propagator can be
satisfactorily ameliorated at high fields if (but only if) the
correct pulse sequence is used. At low fields, internal gradi-
ents are greatly reduced, and more protocol options are
available in PFG experiments [29]. In particular, we show
that the unipolar PFG archetypes [30,31] are usable when
internal gradients are sufficiently small. Even when they
persist, as in our study rock, the unipolar protocols remain
marginally acceptable, subject to a small penalty on SNR

and larger systematic errors on the moments of the
propagator.

Flow propagators may also be measured at low fields
with fixed-field-gradients (FFG) in the fringing field of a
superconducting magnet [32]. However, unlike the PFG
experiments used here, only a more limited number of
FFG pulse sequences can be used in fringe fields. In partic-
ular there are no analogues of the bipolar variants available
in PFG experiments. Our data implies that in the case of
our study rock (a sandstone), FFG experiments would be
subject to quantitative errors in the propagator measure-
ment even at low fields, whilst in many carbonates they
would not.

We consider the signal to noise ratio SNR of the low field
experiments in more detail. According to [33] this scales as
x7=4

0 for equivalent resonator geometries. A mitigating fac-
tor is the solenoid resonator geometry used in our low-field
system. This yields an advantage (relative to a saddle coil)
of a factor �3.1 [33] additional to the frequency scaling. At
2 MHz, relative to 85 MHz, we estimate a reduction in SNR
of .245 (see Appendix C). Nevertheless, our practical
results show that this is not a serious limitation, and dispel
previous misconceptions about SNR limitations for flow
propagator measurements at low fields.

2. Experimental

PFG-NMR propagator experiments measure the statis-
tical distribution of fluid displacements (f) for a chosen
mean flow velocity (v) during a chosen flow evolution time
(D). The (tunable) length scale in PFG-NMR experiments
is given by Æfæ0 = vD, where Æfæ0 is the mean displacement
during time D along the mean flow direction (ŷ), i.e.
Ævæ = [0,v, 0]. v is a volume-average ‘‘interstitial’’ or capil-
lary flow velocity given by v ¼ _V =A/, where _V is the
imposed volumetric flow rate, and A and / are the cross-
sectional area and porosity of the rock, respectively. For
the flow rates _V used here, the maximum capillary flow
velocity was v = 1.10 mm s�1. From the measured perme-
ability (�2 lm2), one can estimate a mean capillary diame-
ter d � 30 lm [34], implying a low Reynolds number
Re . 0.03 and a large Péclet number Pe . 15 regime.

By incrementing values of q = cdgy, the magnetization
wave vector set up by the pulsed gradients, the entire prob-
ability distribution function of these displacements P(fjD,
v) may be determined. This is the NMR ‘‘Flow Propaga-
tor’’, for chosen D and v. Alternatively, a more limited
measurement of the moments of the distribution of
P(fjD, v) may be attempted. Both approaches have been
applied to flow through mono-disperse bead packs and
rocks [3–9,11–14,16,18]. Here, we demonstrate the feasibil-
ity of both methods at 2 MHz.

2.1. Rock, core-holder and NMR system

The flow experiments were performed on Bentheimer
sandstone, a German building sandstone. The aeolian ori-
gin is reflected in a low proportion of clays, and a high
hydraulic (Darcy) permeability. Typically about 2 lm2, this
would be regarded as unusually high for a reservoir rock.
In Section 4 we also compare the Bentheimer data to Indi-
ana Limestone for the case of no flow.

Porosity as determined by Boyle’s Law helium pycnom-
etry was / = 23 p.u. (‘‘p.u.’’ means ‘‘porosity units’’, where
1 p.u. ” 1%). The rock was saturated in a NaCl brine of
conductivity 5 S m�1. Porosity measured with NMR using
a CPMG sequence [35], was / = 22.2 p.u. The small dis-
crepancy in measures of porosity is common, and can be
due to several reasons such as imperfect saturation of the
rock (residual air), surface or corner flaws causing shape
deviations from a right cylinder, and volume changes by
swelling of water-sensitive clays. Because of a degraded
SNR, the original brine was replaced by deionized water;
the NMR porosity was further reduced to / = 21.5 p.u.
Clay swelling under reduced salinity is a plausible explana-
tion. During the multiple months of flowing deionized
water and NMR data acquisition, the porosity / =
21.5 p.u. was stable within ±0.2 p.u.

The rock was a cylinder of diameter 1.5 in. nominal
(.38 mm) and length 62 mm. The diameter 1.5 in. is a
standard size in petrophysics laboratory where accurate
porosity measurements are critical; measurement accuracy
(for any method) rapidly deteriorates in practice for small-
er diameter cores. This necessitates both a core holder, and
a magnet, probe and gradient system based on such phys-
ical sample sizes. The NMR system [Oxford Instruments,
Abingdon, UK; model ‘‘Big-2’’] with ‘‘Maran-DRX’’ con-
sole] consists of a 50 mT (nominal) permanent magnet
thermostated to 30 �C, equipped with a 53 mm solenoid
resonator and ‘‘slab’’ format field gradient coils.

A custom-made core holder [ErgoTech Ltd, Conwy,
UK] (Fig. 1), was used for mounting the rock sample. A
glass-fibre/PEEK (poly(ether-ether-ketone)) composite
pressure tube confines all pressurized fluids radially, but
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Fig. 1. Schematic of the core-holder and NMR system used. The straining
frame is constructed from an austenitic (Grade 316) stainless steel, widely
described as ‘‘non-magnetic’’. (Small differences in sample linewidth are
detectable but minor.) The ‘‘Big-2’’ magnet assembly (not shown) fits
within the steel frame with the NMR coil around the composite pressure
tube. Also shown is the flow loop to the piston pump, and its grounding to
the NMR system via the steel frame (dotted line).
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Fig. 2. (a) Tanner’s unipolar PFG sequence [30], and (b) Cotts’ ‘‘13-interval,
Condition I’’ bipolar gradient sequence [36]. Thin (thick) vertical lines
indicate 90� (180�) r.f. pulses (of duration t90 = 21 ls), layered boxes
indicate incremented gradient pulses jgyj 6 25 G cm�1 (cycle through
opposite polarity not illustrated) of duration d = 4 ms, sSTE = 8 ms is the
encoding time, and the grey bump indicates the stimulated echo (STE). D is
the tunable flow evolution or measurement time [8,10], where D 6 2 s.

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

P
(ζ

)×
〈ζ

〉 0

ζ/〈ζ〉
0

〈 ζ〉
0
 = 110 μm

〈 ζ〉
0
 = 275 μm

〈 ζ〉
0
 = 550 μm

〈 ζ〉
0
 = 825 μm

〈 ζ〉
0
 = 1100 μm

Fig. 3. Probability distribution function P(fjD, v) of fluid displacements f
using the bipolar sequence for various flow evolution times
D = {0.1,0.25,0.5,0.75,1} s. The axes are scaled by the nominal mean
displacement Æfæ0 = vD, and a fixed flow rate of v = 1.10 mm s�1 was used.
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does not carry any axial stress. A novel feature of the
design is that axial loads are taken on the external straining
frame. A per-fluorinated oil [3M� Inc., USA; Fluorinert�
grade FC-40] is used to confine the rock under pressure in a
rubber sleeve. The system operates at isotropic pressures to
�24 MPa (240 bar . 3500 psi), and by heating and circu-
lating the confining fluid, temperatures to 120 �C may be
used. As shown in Fig. 1, it is also equipped with an exter-
nal fluid pathway to and from the rock used for the water
flow. Also shown on the schematic is a grounding path
from the core-holder’s strain frame to the spectrometer’s
common ground. As detailed in Appendix C, the addition-
al noise which arises when flowing conductive saline solu-
tion instead of deionized water can be reduced by
grounding the conductive flow line (which is in contact
with the straining frame) to the spectrometer.

A homogeneous fluid saturation was confirmed using
NMR profiles (1-D images). De-ionized water at 25 �C
was pumped through the rock with a dual-cylinder piston
pump [Teledyne-ISCO, USA; model 1000D] at a mean
flowrate of _V ¼ 16:2 mL min�1. A continuous pressure
drop Dp . 90 kPa (13 psi) was raised across the rock at this
flowrate.

2.2. Pulse sequences

In Fig. 2 we show typical PFG-NMR pulse sequences
used for measuring the flow propagator [8,29,30,36–38].
The initial set of gradient pulses are used to encode the
positions y(0) of the fluid’s polarized nuclei at an initial
time t0, while the second set are used to decode the fluid
displacement f = y(D) � y(0) at a later time t0 + D. The
observed PFG-NMR signal takes the form a stimulated
echo (STE), whose intensity is given by the ensemble aver-
age over all polarized spins S(q) = Æeiqfæ, where: q = cdgy is
the magnetization wavenumber, c/2p = 4257 Hz G�1 is the
gyro-magnetic ratio of protons, gy is the amplitude of the
PFG along the flow direction (ŷ), and d is the gradient
duration time. The signal heiqfi ¼
R

Pðf0jD; vÞeiqf0 df0 is mea-
sured for a set of 128 values of q between ±qmax. Optimized
choice and interpolation of the q values are as described in
[14]. More generally, the magnetization ‘‘grating’’ eiqf

should be written eiq Æ f for general wavevectors q and vec-
tor displacements f but in this paper only unidirectional
field gradients selecting displacement components f in the
y direction are considered. Propagators P(fjD, v) are then
determined by inverse Fourier transform of the data set.
Typical examples of NMR propagator are shown in
Fig. 3, the details of which are discussed in Section 5.

Two different pulse sequences are used in this study. The
original Tanner [30,31] sequence, shown in Fig. 2(a), uses
unipolar gradient pulses, whilst the Cotts 13-interval
sequence [36], shown in Fig. 2(b), uses bipolar gradient
pulses with 180� r.f. refocussing pulses interposed between
the opposed-polarity gradient pulses (see Appendix B). The
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bipolar pulse sequence reduces the effects of induced inter-
nal gradients typical for porous media. In the high field
(85 MHz) case, the bipolar pulse sequence is used univer-
sally. In the low field case, where internal gradients are
expected to be lower by at least a factor of 40, the unipolar
sequence may be feasible for some rocks. In the next sec-
tion we compare low and high field propagators using
the bipolar sequence, while in Section 4 we compare the
bipolar and unipolar sequences, and the effect of the
remaining internal gradients at 2 MHz.

3. High vs. low-field propagators

In Fig. 4 we compare the flow propagators for similar
(adjacent cores, cut from the same block) Bentheimer sand-
stone rocks under similar experimental conditions. The
2 MHz (present study) is taken with D = 0.45 s and
v = 1.10 mm s�1, while 85 MHz [14] used D = 0.45 s and
v = 1.03 mm s�1. We conclude that measurements at
2 MHz present no difficulty, and that the propagators are
very similar at low (2 MHz) and high (85 MHz) fields.
The small differences shown in Fig. 4 could be due to (a)
salinity effects on the rock, (b) the fact that the cores are
not identical, and/or, (c) different internal gradient
artifacts.

Different salinities used could partly explain the differ-
ences in Fig. 4. For 2 MHz (present study) we flowed deion-
ized water across the rock in order to reduce the noise in our
experiment (see Appendix C), whereas the high field data
taken from [14] used brine. However, it is known that low
salinity water (especially deionized water) tends to cause
swelling of any clays in the rock, which may reduce the
porosity. As mentioned earlier, the NMR measured poros-
ity for deionized water saturation (/ = 21.5 p.u.) was
slightly lower than for brine saturation (/ = 22.2 p.u.),
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Fig. 4. High vs. low-field flow propagator for similar Bentheimer rocks
(adjacent cores, cut from the same block) and similar experimental
conditions, both using the bipolar sequence. Data at 2 MHz (present
study) used D = 0.45 s and v = 1.10 mm s�1, while data at 85 MHz (taken
from Scheven et al. [14]) used D = 0.45 s and v = 1.03 mm s�1.
which could account for the small differences in pore geom-
etries. It is also possible that the differences are due to the
cores not being identical, however, we note that the core-
plugs were drilled from adjacent parallel positions in the
same core.

Finally, it is possible that the internal gradient artifacts
on the propagators are not identical between low and high
field. As mentioned in Section 2, the bipolar sequence is
designed to minimize such internal field effects, however,
the bipolar sequence can only eliminate uniform (i.e. con-
stant) internal gradients. If, on the other hand, the internal
gradients vary significantly during the encoding time sSTE,
no pulse sequence exists which can properly refocus such a
fluid trajectory, especially at high fields (although further
improvements can be implemented [39]).

We conclude from Fig. 4 that the differences between
high and low field data are not large, for this rock (quanti-
tative differences and their origins are beyond the scope of
this paper). Since the internal gradient heterogeneities must
scale linearly with B0 in their point values, and more
strongly (� B3=2

0 [28]) in their effect on diffusion (a factor
�280 for our two fields), the agreement of Fig. 4 implies
that internal gradient heterogeneities over pore length
scales are not a serious interference with the propagator
measurement in this rock, at either field, provided that
the bipolar sequence is used. This may not be the case
for other sandstones where susceptibility contrasts can be
very much larger. As exemplified in Fig. 5, internal gradi-
ents may become negligible for carbonate rocks at
2 MHz (in the static situation), and the unipolar archetype
sequence is then usable without artifact. This is never the
case at 85 MHz where use of the bipolar sequence, with
real sedimentary rocks of any type, is universal.
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4. Unipolar vs. bipolar sequences at 2 MHz

Interpretation of the flow propagator generally assumes
that there are no internal field gradient effects. The pres-
ence of internal gradients distorts the propagator and
quantitative accuracy is degraded. As discussed in Section
3, the bipolar PFG sequence reduces but does not eliminate
these internal gradient effects. In FFG experiments howev-
er (as in fringe fields or in a bore-hole tool), there is no ana-
logue of the bipolar sequence. In this section, we discuss
distortions of the propagator under the unipolar sequence,
in the presence of internal gradients, which are found to
persist even at 2 MHz for certain rocks.

Surface relaxation processes, and susceptibility induced
variations of the internal fields (produced by the suscepti-
bility mismatch between fluid and matrix) affect nearly all
flow NMR measurements through porous media, even at
2 MHz. As shown in Fig. 5, we found that the use of the
unipolar pulse sequence (or ‘‘7-interval’’ [36] sequence)
gave a reduced STE intensity IUni as compared to the bipo-
lar pulse sequence STE intensity IBi. This is a result of the
effect of internal field gradients gint in the unipolar
sequence, which are (partially) cancelled in the bipolar
sequence.

For comparison, we show also v = 0 data for a contrast-
ing rock, Indiana Limestone, an outcrop limestone of sig-
nificant internal geometric heterogeneity but low contrast
in magnetic susceptibility. In this case there is no observa-
ble difference between IUni and IBi for all values of
s2
STE

D� s3
STE
=2, demonstrating that internal gradients are

negligible in this rock, at least for the stationary case. This
was previously shown for diffusion data, in [29]. The con-
trast in behavior between sandstones and carbonates is
supported by the susceptibility data in [28], where the dis-
tributions of susceptibility contrast Dv in over 320 sand-
stones and carbonates show median Dv values at least
one order of magnitude different between the two rock clas-
ses. It is also in accord with common empirical experience
in many other NMR experiments on rocks. Whether the
bipolar sequence is required at 2 MHz will depend on the
magnitude of the internal fields. From the data of [28],
and the specific cases in Fig. 5 and [29], we conjecture that
the bipolar sequence will be preferred in the majority of
sandstones, but unnecessary in many carbonates.

The data for Bentheimer can be understood qualitative-
ly as follows. Using Cotts’ formulation, the intensity ratio
for gy = 0 is approximately given by [36]

IUni

IBi

’ exp �c2g2
intD0 � s2

STE
D� s3

STE
=2

� �� �
ð1Þ

Strictly speaking, Eq. (1) applies only for free diffusion
(without flow) in a uniform background gradient, and is
thus an approximate description of the data for flow in
rocks. Nevertheless, the decay in the data set is evident,
and the decay collapses well to s2

STE
D� s3

STE
=2 over a

wide range of 1 ms 6 sSTE 6 15 ms and 4 ms 6 D 6 1 s
(Fig. 5). This is the analogue to CPMG decays in rocks
[28] where scaling by t2
Eð2nsÞ was shown. In the case of

the Bentheimer v = 0 data, we fit the data to Eq. (1) (black
curve in Fig. 5) and estimate the mean internal gradient
girms ’ 0:061 G cm�1 (where ‘‘irms’’ = inverse root mean
square) for Bentheimer at 2 MHz (see Appendix B for de-
tails). We further conjecture that the scaling of Eq. (1) ap-
plies in the flowing case also. This is supported empirically
by the data in Fig. 5. The decay in IUni/IBi is more severe
when flowing, as molecules move significantly longer dis-
tances (and through more fluctuations in the internal field)
over the motion-encoding period D. This shows that where
bipolar sequences are required, even at 2 MHz, for diffu-
sion (non-flowing) measurements, they will be required, a

fortiori, for Flow Propagator measurements. The conjec-
tured scaling for the flowing case requires further analysis,
but substitution of diffusion coefficient by a dispersion
coefficient is an obvious ingredient. These developments
will be reported elsewhere, as well as the flowing data for
Indiana Limestone.

In Fig. 6 we compare the full propagators for the uni-
polar vs. bipolar sequences, on the same rock. Part (a)
shows the observed signal intensity, while (b) shows col-
lapsed data set for more careful comparison. We find that
the propagators in (b) scale well for small displacements
f/Æfæ0 [ 1 (where Æfæ0 = 550 lm), whereas the bipolar
sequence shows more weight at larger displacements
f/Æfæ0 J 1 (see Section 5.1). This can be expressed quan-
titatively by comparing the observed mean displacement
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for the unipolar case ÆfæUni/Æfæ0 = 1.162 to the bipolar
case ÆfæBi/Æfæ0 = 1.274. The fact that both means are larger
than unity is discussed in more detail in Section 5.1 in
terms of surface relaxation effects. The fact that the mean
is slightly smaller for the unipolar suggests that fluid par-
cels that have traversed several pores and different inter-
nal field environments are not properly refocused by the
unipolar sequence. This effect must be expected to be
much worse at high fields, where use of the bipolar
sequence has long been recognized as essential.

Bipolar experiments do however have several disadvan-
tages over unipolar sequences. (1) The transverse evolution
time sSTE is lengthened adversely with the eddy current
delays needed (two vs. one). (2) Correcting tip angle errors
in r.f. by phase cycling gets progressively more complicated
as the number of r.f. events increases. (3) There are no fixed
field gradient (e.g. fringing field) analogues to bipolar pulsed
gradient experiments. Bipolar sequences are necessary when
internal gradients are significant; we find few countervailing
advantages when internal gradients are negligible.
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5. Quantitative propagators and moments analysis

The objective of this paper is to demonstrate that prop-
agator measurements are practical at low fields, and not a
detailed discussion of these propagators. However, a brief
discussion on the moments analysis is made below to show
that the data is of high quality. All moments have been cal-
culated using the ‘‘low-q’’ moments of S(q) [14].

Propagators for various flow evolution times
D = {0.1, 0.25,0.5, 0.75,1} s, as a function of displacement
are presented in Fig. 3. The axes are scaled by the nominal
mean displacement Æfæ0 = vD, for a fixed flow rate of
v = 1.10 mm s�1. All data shown in Fig. 3 are for deionized
water, corresponding to free diffusion lengths lD = (2D0D)1/2

ranging from 21 lm to 65 lm, where D is the diffusion time
(Fig. 2). lD is of the order or smaller than the throat-size
d � 30 lm (d is also about a third of the grain sizes). For
short D, the displacements are mostly ballistic and the
shape of the probability distribution for early times reflects
that of the local velocity distribution [8]. As D is increased,
a double peaked distribution develops which distinguishes
the bound (or stagnant) fluid from the flowing fluid. As
D is increased further, the bound fluid peak decreases by
diffusive coupling to flowing paths, and spectral weight is
increasingly shifted from f � 0 to larger displacements.

We find that the three lowest moments of the distribution
are useful to quantify the statistical properties of the flow dis-
placement distributions and their evolution [12,14,40]. These
moments are (1) the observed mean displacement Æfæ, (2) the
standard deviation r and (3) the skewness c. They are derived
from a cumulant analysis of S(q) = Æeiqfæ over a small range
of q space near q = 0 as such

lnheiqfi ¼
X1
j¼1

ðiqÞj

j!
X j: ð2Þ
Xj are the cumulants, which are related to the moments as
such: X1 = Æfæ, X2 ” r2 = Æ(f � Æfæ)2æ, X3 ” c3 = Æ(f � Æfæ)3æ,
etc.

The first few moments, as a function of time or mean
displacement, provide quantitative measures of dispersion
that are useful in comparing different samples, different
flow regimes and calculation model systems [12,14]. Fur-
thermore, limiting the data acquisition to the small q

range required for the cumulant analysis permits the use
of short and weak pulsed field gradients. Short pulses
limit signal losses during the spatial coding periods, while
weak gradient pulses limit the distortions due to eddy cur-
rents induced by the pulsed field gradients. As a compro-
mise, we carried out our moment analysis using a fixed
pulse duration d = 4 ms (see Fig. 2). The maximum fitting
range in q space, qmax, was determined as the q value
where jS(qmax)j/S(0) � 0.85, in other words, the q value
where the magnitude of the signal intensity jS(q)j
decreased to �85% of its initial amplitude S(0) at q = 0.
A gradient list was then generated by selecting �20 evenly
spaced values ranging over ±gy,max, where cdgy,max =
qmax. The values for gy,max used for different D are tabu-
lated in Appendix B.

In Fig. 7 we present the standard deviation (a) r/Æfæ,
and, the skewness (b) c/Æfæ (both scaled by Æfæ) vs. Æfæ for
a fixed flow rate v = 1.10 mm s�1 and various evolution
times D. Grey symbols are raw data, black symbols are
recalculated according to Eq. (3) [14]. We see that the
skewness, or third moment (c), decreases as the mean-
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displacement increases from 20 to 2000 lm, but does not
vanish altogether, indicating that the correlation length for
the Lagrangian flow displacement is larger than 2000 lm,
i.e. flow is correlated over many grain lengths [8,40].

The approach to Gaussian (where the skewness vanish-
es) is reflected also in the shape of the propagators Fig. 3.
Some spectral weight, which at short times appeared at
the largest displacements, has, at later times, shifted
toward the mean displacements. When the Taylorian limit
is obtained, the displacement distribution is Gaussian,
and the distribution of molecular displacements is Gauss-
ian with r2 = 2KD by definition [22–24], where K is the
dispersivity of the sample. For the Taylorian limit one
expects r/Æfæ = Æfæg where g fi �0.5. It is abundantly clear
from the second moment analysis that we are in the pre-
asymptotic regime.

5.1. Relaxation effects

As discussed in Refs. [13,14,39,41], surface relaxation
effects can produce undercounting of spins. The presence
of such undercounts is signaled by deviations from unity
of the ratio of measured mean displacements divided by
the nominal mean displacement, h = Æfæ/Æfæ0. Deviations
of h from unity are also observed at 2 MHz as shown in
Fig. 8.

For the bipolar case, the ratio rises towards a D indepen-
dent and approximately steady value of h . 1.29 for large
D. It is generally believed that the correlations between sur-
face relaxation and displacement are responsible for
removing stagnant (small displacement) spins from the
measurement, thereby pushing h above unity. In this con-
text it is interesting to note that the time constant for the
exponential fit to h is �0.203 s which is within a factor 2
of the log-mean spin-lattice relaxation time
ÆT1æLM = 0.390 s at 2 MHz. A similar, yet slightly smaller
effect, was also found at 85 MHz for Bentheimer [14] where
h . 1.16 was found for large D (taking / = 22.2 p.u. for
brine). This frequency difference is possibly a result of
increased undercounting of small displacement fluid at low-
er fields, which is consistent with the fact that surface relax-
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Fig. 8. Deviation of observed from expected mean displacement h =
Æfæ/Æfæ0 vs. evolution time D for a fixed flow rate v = 1.10 mm s�1 (porosity
is / = 21.5 p.u.). Lines are exponential fits with 1/e times of 0.203(0.256) s
for bipolar (unipolar) sequences, respectively.
ation is slightly larger at lower frequencies hT 1iLM � x�a
o ,

where typically a [ 0.2 (data of Horsfield in [42]).
In Fig. 8 we also show h for the unipolar propagator.

While the unipolar propagator suffers from the same
undercounting of small displacements as the bipolar
sequence, it suffers additional undercounting from improp-
er refocusing at large displacements (see Fig. 6), thereby
decreasing h compared to the bipolar sequence. Such
undercounting for large displacements is potentially a
much greater issue at high fields since internal gradient dif-
ferences become larger from pore to pore. Indeed, under-
counting at large displacements has been observed at
high field and short D even for the bipolar sequence
[13,41], although sequences have been developed to further
reduce such effects [39].

One simple model to take into account undercounting of
small displacement fluid was developed in [14]. The authors
make some assumptions and construct a perturbed proba-
bility distribution P 0 as such P 0 = (1 � h�1)d(f) + h�1P(f)
where d(f) is a Dirac function, and successfully recovers
the expected mean displacement Æfæ0 = �fP 0(f)df. In
Fig. 7 we show the correctly recalculated moments (a) r 0/
Æfæ0, and, (b) c 0/Æfæ0 plotted against Æfæ0, where r 0 and c 0

can be deduced from the old parameters (r,c, Æfæ,h) as such
[14]

r02

hfi20
¼h

r2

hfi2
þ ðh� 1Þ ð3Þ

c03

hfi30
¼h2 c3

hfi3
þ 3hðh� 1Þ r2

hfi2
þ ðh� 1Þðh� 2Þ

Eq. (3) is taken from Ref. [14] (and rearranged).
The arbitrary lower limit for the fitting range of r/Æfæ is

chosen such that Æfæ/lD P 5, i.e. the mean dispersive dis-
placements Æfæ are much larger than the mean diffusive dis-
placement lD. We find that the exponent for r/Æfæ tends
towards g 0 . �0.18 for the recalculated data. This should
be compared to that at 85 MHz where g 0 . �0.22 [14],
i.e. both data indicate a pre-asymptotic regime.
6. Conclusions

We have demonstrated the feasibility of low field NMR
measurements of fluid displacement distributions (the flow
propagator) in Stokes flow in porous media, in the pre-as-
ymptotic dispersion regime. The data quality shows that
the well-known loss of SNR at low magnetic fields is not
in practice a serious limitation.

The observed similarity between high field (85 MHz,
[14]) and low field (2 MHz, present study) flow propagators
implies that the bipolar pulse sequence is sufficient in
reducing internal gradient artifacts at 85 MHz, for the
present rock, although the largest internal gradients at
85 MHz (gmax � 650 G cm�1) are over an order of magni-
tude larger than the maximum applied gradients.

More importantly, the close agreement between results
from the unipolar and bipolar sequences at 2 MHz
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demonstrates that the effect of internal gradients is much
reduced at 2 MHz, and that the unipolar sequence may
be feasible in some cases. Comparison of bipolar and uni-
polar pulse sequences indicates a mean value
girms ’ 0:061 G cm�1 and a maximum gmax . 2.31 G cm�1

in the study rock; these are now significantly lower than
the applied gradients available. In such cases, where inter-
nal gradients persist at low fields, the bipolar sequence is
preferred for a mild SNR advantage and quantitative accu-
racy on moments of the propagator; however where sus-
ceptibility contrasts are less serious (as is typical for
limestones) the bipolar variant may be unnecessary.

We demonstrate that the moments analysis (based on
low-q data) previously used at higher fields [14] to extract
information about dispersion, is also possible at lower
fields.
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Appendix A. Effects of asymmetric bipolar pulses

Our implementation of the bipolar sequence Fig. 2(b) is
slightly non-ideal in that the gradient pulses are placed
asymmetrically with respect to the 180� refocussing pulses
[29]. It is shown in [36] that the contribution to the attenu-
ation exponent in gint Æ g vanishes exactly for the symmetri-
cal disposition. This advantage in interpretation is not
available in the chosen timings. However it is also desirable
to minimize eddy current effects on the 180� r.f. pulses
whilst avoiding unnecessary increases the encoding time
sSTE. We found that eddy currents were sufficiently dissi-
pated J 2 ms after a gradient pulse was switched off; this
duration was coded as an eddy current decay time. Molec-
ular displacements during the encoding and decoding inter-
vals should also be small. For sSTE = 8 ms a small mean
displacement of vsSTE � 9 lm is expected; this could be
reduced by technical improvements in eddy current com-
pensation but is only increased by a symmetric placing of
the gradient pulse pairs.

For the unipolar sequence the leading order cross term
in free diffusion is [36]

lnðIUniÞ ’ Oðg2Þ � c2D0dsSTEðg � gintÞð2Dþ � � �Þ þO g2
int

� �
ðA:1Þ

while for the bipolar case the cross term is

lnðIBiÞ ’ Oðg2Þ � c2D0dsSTEðg � gintÞ12ðd1 � d2Þ þO g2
int

� �
ðA:2Þ

where d1,2 are the delays before and after the gradient
half-pulses. Eq. (A2) vanishes for symmetric timing but,
whatever the degree of asymmetry, is clearly always much
smaller than for the unipolar case. To our knowledge, no
models exist for estimating the magnitude of such ‘‘cross
terms’’ in the flowing systems. Precise quantification is dif-
ficult in rocks because all cases require a volume integral of
gint Æ g, wherein gint fluctuates intricately.

Since the cross terms are of O(q) in the attenuation
exponent, their effect on the acquired propagator (a Fou-
rier transform of the q-space data) will be to convolve a
Lorentzian Point Spread Function (PSF) with the Propa-
gator, of a width not yet estimated a priori. However
agreement between bipolar and unipolar results at
2 MHz (where the cross terms are very different, by
Eqs. (A.1) and (A.2)), and between bipolar results at 2
and 85 MHz (where any term of order g Æ gint will be
worse by a factor of �40) suggests (albeit not conclusive-
ly) that the effective width of the PSF is negligible in all
cases, for this rock.

Appendix B. Estimate of internal gradients

In this Appendix, we discuss the details for estimating
the mean value of the internal gradients in Bentheimer
using the data in Fig. 5 and the model in Eq. (1). Strictly
speaking, Eq. (1) only applies for free diffusion (without
flow) in a uniform background gradient. In general the
effect of non-uniform internal fields requires a full charac-
terization by the DDIF (decay by diffusion in internal
fields) method [43].

Given that there is clearly insufficient long time data in
Fig. 5 to do a full inversion [44], we use a stretched expo-
nential variant of Eq. (1) as such

IUni

IBi

’ I0 exp � tð3Þ=T ð3Þe

� �b� �
ðB:1Þ

where tð3Þ ¼ s2
STE

D� s3
STE
=2 is the effective time in units

of s3. The results of the best fit of Eq. (B1) to the data
is shown as the black curve in Fig. 5, where I0 = 1.029
is the initial amplitude, b = 0.325 is the stretch expo-
nent, and the time for the amplitude to drop by 1/e is
given by T ð3Þe ¼ 0:00858 s3. We then relate T ð3Þe to the
mean value ÆT(3)æ over the underlying distribution as
such [45]

hT ð3Þi ¼ T ð3Þe

b
C

1

b

� 	
ðB:2Þ

where C is the gamma function, from which we find
ÆT(3)æ = 0.0350 s3. According to Eq. (1) we can then relate
ÆT(3)æ to the ‘‘irms’’ (inverse root mean square) value girms

of the internal gradients as such

girms ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

c2D0hT ð3Þi

s
’ 0:061 G cm�1: ðB:3Þ

To allow for restricted diffusion we make the substitution
D0 fi D 0 where D 0 is a restricted diffusion coefficient D(D)
[21], i.e. D(D) 6 D0 (where D0 . 2.13 · 10�9 m2 s�1 is the
free diffusion coefficient for water at 25 �C). Using a



Table A.1
Internal gradient estimates for Bentheimer sandstone, compared to
applied gradients

1H resonance 2 MHz 85 MHz
Intrinsica linewidth (Dx/2p)/Hz 7b 300

Internal gradients (all G cm�1)
Maximum gmax (Eq. (B4)) 2.31b 650
Average girms (Eq. (B3)) 0.061 17b

Applied gradients (all G cm�1)
gy,max: In low-q data at D = 15 ms 3.01b

In low-q data at D = 1.9 s 0.07
Limit of hardware (nominal) 25

a Linewidths assume a perfectly shimmed magnet.
b Indicates extrapolated values assuming Dx � B0, gmax / B3=2

0 and
girms / B3=2

0 . Applied gradients ±gy,max given for the low-q moments
analysis, for extreme values of D (Fig. 7), in addition to the hardware limit.
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constant value of D 0 instead has a negligible effect on our
analysis and so D 0 . D0/2 was used for specificity in Eq.
(B3).

We note that girms thus deduced is consistent with esti-
mates of the maximum effective gradient (in diffusion)

gmax ’
Dx3=2

cD1=2
0

ðB:4Þ

[28], where Dx is the intrinsic linewidth due to the internal
gradients. According to the intrinsic linewidth at 85 MHz
Dx/2p . 300 Hz [14], we deduce that Dx/2p . 7 Hz at
2 MHz which according to Eq. (B4) suggests a maximum
internal field of gmax . 2.31 G cm�1 at 2 MHz, and a
large-pore to small-pore critical size l* . 7 lm. From both
the effective mean value girms . 0.061 G cm�1 and the max-
imum gmax . 2.31 G cm�1, we find an internal gradient
half spread of gmax/girms . 40, which is typical in a rock
[28].

Our internal gradient estimates are summarized in
Table A.1, and compared with the applied pulsed gradi-
ents used. The maximum effective gradient gmax, at
2 MHz, is an order of magnitude smaller than the max-
imum applied gradients used in our experiments
(25 G cm�1). At 85 MHz the corresponding gmax � 650 G
cm�1 is over 25 times larger than the maximum applied
gradient. This makes explicit the mandatory use of the
bipolar sequence at high magnetic fields and supports
our findings that at 2 MHz the effect of internal gradi-
ents is typically mild, so the unipolar sequence may be
adequate in some cases.

Appendix C. Noise

There are three main sources of noise: the thermal or
Johnson noise in the pick-up coil NR (including resistive
losses plus other losses in the circuit such as dielectric losses
in tuning capacitances), noise in the receiver system (typi-
cally expressed as the noise factor F of the pre-amplifier)
[33], and the noise Nr inductively coupled via our saline
flow loop.
C.1. Thermal noise

The average thermal noise voltage across a coil of resis-
tance R at a given temperature Tc is

NR ¼ ð4kBT cRDmÞ1=2
: ðC:1Þ

Here kB is the Boltzmann constant, R is the (coil) resis-
tance, and Dm is the band-width. The resistive loss in the
coil itself can be large at high frequencies due to skin depth
(�45 lm at 2 MHz) effect which leads to R = (‘c/p)(lqx0/
2)1/2 (�0.5 X) for our NMR coil of unwound length ‘c, wire
circumference p, permeability l and resistivity q [33]. We
then obtain

NR ¼ ðacDmT cÞ1=2x1=4
0 ðC:2Þ

where ac = 4kB(‘c/p)(lq/2)1/2. For a bandwidth of
Dm = 0.2 MHz, this predicts NR . 5 · 10�8 V. The fre-
quency dependence of the signal S itself goes as
S ’ x2

0=T s, where the first x0 comes from Faraday’s
law of induction, and the other x0/Ts comes from the
polarization (where Ts is the sample temperature). Com-
bining relevant terms leads to the following SNR expres-
sion [33]

SNR ’ /V sn1=2
sc

ag0ðF DmT cÞ1=2T s

x7=4
0 ðC:3Þ

where /Vs is the porosity times the rock volume, a is the
coil radius, F = (Tn/Tc + 1) is the noise factor of the pre-
amplifier with noise temperature Tn, nsc is the number of
scans acquired (or signal averaging), and g0 = 1 (3.1) for
a solenoid (saddle) coil of similar dimensions, respectively
[33]. For similar sample and rock dimensions, Eq. (C3) pre-
dicts the reduction (quoted in our Introduction) of �245 in
SNR, in going from 85 MHz (saddle-coil) to 2 MHz
(solenoid).

C.2. Saline flow-line noise

In the present case, however, the conductive saline solu-
tion in the rock and its flow loop back to the pumps added
an extra noise term. We first verified that just placing the
brine filled rock (i.e. a conducting sample) inside the coil
without any connections to the flow loop had no effect on
the noise. We also verified that the conductive sample did
not significantly alter the Q (�11) of the probe, since Q

alters the SNR � Q1/2 [33]. However, once we connected
the brine flow loop to the rock, there was clearly an extra
noise term. The observed salinity dependence of SNR at
2 MHz is shown in Fig. 9 against the salinity (conductivity)
of the flowing water in the rock, from deionized water up
to 5 S m�1 brine, with fits to Eq. (C8). One experimental
set-up grounded the flowing saline circuit to the NMR
spectrometer’s common ground via the steel frame assem-
bly (see Fig. 1). The other set-up had no such grounding,
which leaves the flow loop floating. It is clear that ground-
ing the flow line helps reduce the noise, and the overall
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penalty in using brine instead of deionized water is to signal
average nsc � 4 times more.

Defining the extra noise term from the saline flow-loop
as Nr, we deduce that the total noise is now

N ’ N 2
R þ N 2

r

� �1=2
; ðC:4Þ

given that NR and Nr are independent and can thus add in
quadrature. Using Eq. (C4) and taking NR . 5 · 10�8 V
Eq. (C2), we find from Fig. 9 that Nr . 6 (18) · 10�8 V
for the grounded (not grounded) arrangement, respective-
ly, at high salinity (5 S m�1). In other words the two sourc-
es Nr J NR are comparable at high salinity, and the total
noise is enhanced when using a highly saline flow-loop.

By using a simple transformer picture we can model the
effect of the conductive flow loop. We start with the basic
transformer equation N r ¼ M _I [46] which relates the volt-
age Nr induced in the NMR coil (secondary coil) to the
rate of change of current _I in flow loop (primary coil), giv-
en their mutual inductance M. Taking the Fourier trans-
form (and then magnitude) of the transformer equation
then results in

Nr ¼ Mx0Iðx0Þ ðC:5Þ
where I(x0) is the r.m.s. current at frequency x0 in the flow
line. I(x0) can be estimated by equating the power dissipa-
tion in the flow lines (left hand side) to the power spectra
density of the noise in the atmosphere (right hand side)
as such

‘

Arw

Iðx0Þ2 ¼ S � P ðx0ÞDm ðC:6Þ

where rw is the flowing fluid conductivity (which depends
on salinity and temperature), ‘(A) is the length (cross-sec-
tional area) of the flow line, S is the area of the conducting
flow loop, and P(x0) is the power spectral density of the
noise in units of W Hz�1 m�2 [46]. In general P(x0)
decreases with increasing frequency with a power law expo-
nent n, also known as ‘‘1/fn’’ noise, where typically
1 6 n 6 2. We therefore assume P ðx0Þ ’ an=xn

0 with con-
stant an. Equating Eqs. (C5) and (C6) we obtain the follow-
ing expression for the flow line noise

Nr ’ ðafDmrwÞ1=2 x1�n=2
0 ðC:7Þ

where af = M2anSA/‘. Combining Eqs. (C2), (C4) and (C7)
results in the final expression

SNR ’ /V sn1=2
sc

ag0ðF DmÞ1=2T s

x2
0

x1=2
0 T c þ a0x2�n

0 rw

� �1=2
ðC:8Þ

where we combine the constants a 0 = af/ac for better com-
parison with Eq. (C3). Fig. 9 shows the results of the fit to
Eq. (C8), which is found to be consistent with the data. We
note that for n = 1 and the same a 0, Eq. (C8) predicts that
the reduction in SNR due to a saline flow loop becomes
more severe at higher frequency.
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